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In this paper, we propose a new lattice Boltzmann scheme for simulation of multi-
phase flow in the nearly incompressible limit. The new scheme simulates fluid flows
based on distribution functions. The interfacial dynamics, such as phase segregation
and surface tension, are modeled by incorporating molecular interactions. The lattice
Boltzmann equations are derived from the continuous Boltzmann equation with ap-
propriate approximations suitable for incompressible flow. The numerical stability
is improved by reducing the effect of numerical errors in calculation of molecular
interactions. An index function is used to track interfaces between different phases.
Simulations of the two-dimensional Rayleigh—Taylor instability yield satisfactory
results. The interface thickness is maintained at 3—4 grid spacings throughout simu-
lations without artificial reconstruction stepsg 1999 Academic Press

I. INTRODUCTION

Since its precursor—the lattice gas automaton (LGA)—was proposed ten years ac
a useful computational fluid dynamics (CFD) technique [1], the lattice Boltzmann mett
(LBM) has emerged as a promising approach for simulation of multiphase flow (for revi
see [2, 3]). Unlike traditional CFD methods which solve macroscopic equations, the L
simulates fluid flow based on microscopic models or mesoscopic kinetic equations. Thi
trinsic feature enables the LBM to incorporate easily many essential physics at microsc
or mesoscopic level. The phase segregation and interfacial dynamics, which are ess
in multiphase flow and are difficult to handle by traditional approaches, can be simulz
in the lattice Boltzmann method by incorporating intermolecular interactions.

Several LBM models for simulation of multiphase flow have been proposed in the
several years. The first LBM multiphase model was proposed by Gunstehsén4]
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based on a two-component LGA model [5]. Later, Gruggal. [6] modified this model to
allow variations of density and viscosity. In these models, red and blue particle distribu
functions were introduced to mimic two different fluids. To maintain interfaces and
separate different phases, a “re-color” step was introduced to force colored fluids to n
toward fluids with the same colors. The second LBM multiphase model by Shan and Che
used a concept of the microscopic interactions between particles. An interparticle pote
was introduced to model the phase segregation and surface tension. The third LBM
proposed by Swifet al. [8] used the free-energy approach. In their model, the equilibriu
distribution was modified so that the pressure tensor was consistent with the tensor de
from the free-energy function of non-uniform fluids.

Although each of the above LBM multiphase models was built on different phy
cal pictures and each has a quite different appearance, a recent study éiyaH§9]
showed that all of them have an origin in the kinetic theory. To be specific, all the
models can be derived by discretizing the continuous Boltzmann equation with cer
approximations. Some of these approximations turn out to be unphysical and lead to
tain unsatisfactory features, such as the spurious current around interfaces and the
of Galilean invariance. Het al. further suggested that an improved LBM scheme fc
multiphase flow can be derived by systematically removing these unphysical approx
tions.

In this paper, we propose a new lattice Boltzmann scheme for simulation of multiph
flow in the incompressible limit. The new scheme simulates fluid flows based on distribu
functions. The evolution equations for these distributions are derived from the contint
Boltzmann equation with appropriate approximations forincompressible flows. The inte
cial dynamics are modeled by incorporating molecular interactions. A pressure distribu
function is introduced to replace the single-particle density distribution function. Con
guently, the numerical stability of the scheme can be improved by reducing the effec
numerical errors in calculation of molecular interactions. An index function is used to tr:
interfaces between different phases.

The past several years have withessed numerous efforts to apply the lattice Boltzr
method to multiphase flows. Two fundamental interfacial dynamics, the Laplace law
the dispersion law in capillary waves, have been verified [6, 8, 10]. Other applicati
include simulations of the spinodal decomposition [11, 12] and multiphase flows throi
porous media [13]. These works either focused on simple problems or lacked quantit:
comparisons with benchmark studies. The accuracy and efficiency of the LBM mode!
simulation of multiphase flows remain to be explored. It is the purpose of this paper tc
this gap. We will use the Rayleigh—Taylor instability as our test case.

There are several reasons for us to choose the Rayleigh—Taylor instability as our be
mark problem. First, the Rayleigh—Taylor instability is of great significance in both fu
damental research and practical applications. At late stages, the flow involves turbt
mixing—a ubiquitous but poorly understood phenomenon. Our study will provide m
insight into this classical multiphase flow problem. Second, the Rayleigh—Taylor instab
provides enough complexities to challenge the capability of our scheme. Beyond the ir
stage, the Rayleigh—Taylor instability exhibits strong non-linearity which is associated v
the growth of the secondary Kelvin—Helmholtz instability. The instability evolving frol
a random initial perturbation exhibits an even more complicated pattern. The succe:
simulating such a complicated multiphase flow problem will bring great confidence
future applications of the lattice Boltzmann method. Finally, there are copious theore
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studies and numerical simulations on the Rayleigh—Taylor instability in literature. We
use these data to quantify the accuracy of our scheme.

The rest of the paper is organized as follows: In Section Il, the continuous Boltzm:
equation for non-ideal fluids will be modified for incompressible flow. In Section Il, a ne
lattice Boltzmann multiphase model is derived by discretizing the continuous kinetic ec
tion. Section IV presents numerical simulations of the two-dimensional Rayleigh-Tay
instability. The results are compared with the theoretical prediction and other computati
results. A brief conclusion is given in Section V.

II. BOLTZMANN EQUATION FOR INCOMPRESSIBLE MULTIPHASE FLOW

A. General Theories

Itis well known in kinetic theory that fluid flow can be described by the Boltzmann equ
tion. By incorporating the intermolecular interaction force, we can obtain the Boltzmze
equation for non-ideal fluids [9],

Df  of f— fed (£—U)'(F+G)feq

— = +¢& Vi=—

= 1
Dt _ ot Y oRT ’ @)

where f is the single particle density distribution function in the phase spfiig,the
microscopic velocity( is the gravity,R is the gas constant, afds the effective molecular
interaction force. In Eq. (1), we have used the single-relaxation-time BGK model [14]
the full collision term and. is the relaxation time. The equilibrium distribution satisfies th
Maxwellian distribution

eq __ 1% _(€ - u)2
= Grrmor eXp{ 2RT | @

whereD is the dimension of the space. The macroscopic densityelocity, u, and tem-
perature,T, are calculated as the moments of the distribution function:

p=/fdg, 3)
pu:/gfdg, (4)
D (€ —u)?
EpRT:/deé. (5)

In this study, we will only focus on the hydrodynamics of multiphase flow and assume
temperature is constant. Thermal multiphase flow will be postponed to future studies.

Using the mean-field approximation for intermolecular attraction [15] and following t!
treatment of the exclusion-volume effect by Enskog (cf. Chap. 16 in Ref. [16]), the effec
molecular interaction force can be expressed as

F = pV(2ap + kV?p) — bo®RTx VIn(p?x), (6)

where the first term comes from the intermolecular attraction and the second term cc
from the exclusion-volume effect. The parameteesdx are related to the intermolecular
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pair-wise potentialar,

1
a= 5 / Uatr(r) dr, ()
r>o
1 2
K = _é/ r Uanr(r)dr, (8)
r>o

whereo is the effective diameter of a molecule;= 2703/3m wherem is the mass of a
single molecule; ang is the increase in collision probability due to the increase in flui
density, which has the following virial expansion form:

5
x(p) =1+ gbp + 0.2869bp)? + 0.1103bp)> + - - - . (9)
The above intermolecular force can also be regrouped into a simpler form,
F=-Vy+F, (10)

whereFs = kpVV?2p represents the force associated with surface tension (the parame
determines the strength of surface tension), énid a function of the density:

¥ (p) = bp?RTx — ap®. (11)

Notice thaty (p) is related to the pressure py(p) = p — pRT, and the pressure satisfies
the following equation of state:

p=pRT(1+box) —ap® (12)

The first term in Eq. (10), which in turn depends on the equation of state, plays a key
in phase segregation. At a high temperature, the attraction among molecules is weak al
random motion of molecules is dominant. Therefore, a fluid can only exist in a single ph
Once the temperature is reduced below a critical value, the molecular attraction bect
strong enough to induce phase segregation. Impthé—T diagram, the isothermal at this
state is characterized by a supernodal curve (Fig. 1). For a given pressure, there exist
possible solutions of density. Two of them (points A and E) represent the gas and li
phases and can be found using Maxwell’s equal-area rule. The intermediate root (poi
lies on a portion of the supernodal curve that is mechanically unstdbja ¥ > 0). It is
this unstable portion that induces phase segregation. For fluids originally in two diffel
phases, this unstable state keeps the phases separated and warrants the sharp interf

The specific value of the critical temperature depends on the equation of state. Fo
van der Waals equation of state,

pRT 2

= - 13
P=1_p, " (13)

the critical temperaturé. = 8a/27bR. For the Carnahan—Starling equation of state [17]

1+bp/4+ (bp/4H? — (bo/4)° a2

p=pRT A= bp/d? o”, (14)

the critical temperaturé. = 0.3773a/bR.



646 HE, CHEN, AND ZHANG

v, v
v

FIG. 1. lllustrative plot of isothermals in phase diagram.

Using the Chapman—Enskog expansion, we can prove that the Boltzmann equatior
recovers the macroscopic equations

d
87'?+V~(,ou) =0, (15)
au 2
pﬁ_‘_(u.v)u =—-Vp+ V- -II4+«pVV +G, (16)

wherell is the viscous stress tensor:
II = pv(Vu+uVv). a7

The kinetic viscosity is related to the relaxation time by=ART. Notice that the above

macroscopic momentum equation differs from the Navier—Stokes equation by an a
tional term,kpVV?2p. This term contributes exclusively to the surface tension. The abc
macroscopic equations are consistent with previous results of thermodynamic studies

B. Modification for Incompressible Flow

It is difficult to simulate multiphase flows by directly solving the Boltzmann equatio
(). The difficulty is related to calculation of the intermolecular force. As shown in Eq. (1
the calculation of the intermolecular force involves the evaluatiovi®¥f which is usually
very large along interfaces. (This problem is less substantial for the surface tension
becausex is usually very small.) This difficulty becomes quite substantial for fluids f:
from the critical point. In this situation, numerical schemes are very unstable under si
numerical errors in calculating the intermolecular force.

In this study, we propose to solve this problem by introducing a new variable,

g=fRT+ ¢ (p)I'(0), (18)
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wherel"(u) is a function of the macroscopic velocity

(€ —w?
'y =———= — . 1
W= GrrToR2 eXp[ 2RT } (19)
It is straightforward to find the evolution equation fpr
Dg Df Dv (o)
— =RT—+T . 2
Dt Dt 1O Dt (20)

Sincey (p) is a function of density and for incompressible fluids the material derivati
d/dt = o, + (u- V), of any function of density is zero, we have

Dy (p)
Dt

=E—Ww-Vy(p). (21)
Substituting Egs. (1), (10) and (21) into Eq. (20), we have

Dg  g—-g™
Dt A

+E—-uw - [FTWEFs+G) — (T —TO)Vy(p)l, (22)
where
9% = pRTIC(U) + ¥ (p)T(0). (23)

Throughg, we can calculate the pressure and velocity using
p= [ ok, (24)

pRTU = / £gdé. (25)

We regard Eq. (22) as computationally superior to Eq. (1) in calculation of the veloc
fields. This is because the term involving/ (p) is now multiplied by a small quantity
I'(u) — I'(0). Notice thatl"(u) — I'(0) is proportional tai/c or the Mach number in nearly
incompressible limit. Consequently, the effect of the numerical errors in calculation
density gradient is greatly reduced by using Eq. (22).

However, Eq. (22) cannot form a complete set of equations for multiphase flow, bec:
the distribution functiorg only gives the pressure and velocity. Another important variab
in multiphase flow, the density, still remains to be determined. (Notice that the den
is not uniquely defined for a given pressure.) For incompressible multiphase flows,
densities of fluids away from the interface are exactly known. The only tasks remaining
to track different phases and to maintain a sharp interface. In this regard, any index fun
satisfying Eq. (1) can be used for these purposes. Once the index function is known,
physical properties such as density and viscosity can be determined.

The concept of the index function has been used in numerous numerical algorithn
multiphase flow, ranging from the Marker and Cell method [19] to the level setapproach [
Nevertheless, how to maintain a sharp interface remains a topic of research for the tradit
method [21]. In our formulation, incorporation of intermolecular force automatically tak
care of this problem.
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Now that Eq. (1) is only used for tracking the density field, we can drop the gravity &
surface tension forces in Eq. (1), since they have no effect on mass conservation. How
the intermolecular force terriv,i (o), must be retained because it is essential in maintainil
a sharp interface between different phases.

In summary, we propose the following formulation to simulate incompressible multiph:
flow,

Df f—f (E—u-Vy(p)

o = - =T r'u), (26)

Dg g—g*

ot—~ 5 tE-w [TW(Fs+G) — T -TO)Vy(p)],  (27)

where f is the distribution of the index functio, andg is the distribution function of
pressure. The equilibrium distributions férandg are

=g, (28)
g% = pRTL(U) + ¥ (0)T(0), (29)
where
_ (€ —u)?
') = Wexp {— SRT } . (30)
The macroscopic variables are calculated by
¢ = / f dg, (31)
p= [ gk, (32)
oRTU = /gg d¢. (33)

There are many ways to calculate physical properties, such as the density and visc
from the index function. In this study, we choose the formulations

¢ — ¢
- — ). 34
p(P) = p +¢h_¢l (ph — 1) (34)
v(p) = v + (Z)h__ill (vh — V1), (35)

wherep; andpy, are densities of light and heavy fluids, respectivelgndvy, are viscosities
of light and heavy fluids, respectively; apdandgy, are the minimum and maximum values
of the index function.

The macroscopic equations for the modified scheme are

9
—_—4V.u=0 (36)

pLE+ULVN}:—Vp+VJ]+wNV%+G. (37)
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In the nearly incompressible limit, the time derivative of the pressure is small and
incompressible condition is approximately satisfied [22]. In a sense, our approach is ¢
to the pseudo-incompressible technique in classical CFD methods [23].

lll. LATTICE BOLTZMANN SCHEME FOR MULTIPHASE FLOW
IN THE NEARLY INCOMPRESSIBLE LIMIT

Inthe preceding section, we have proposed a continuous formulation based on distrib
functions for simulation of incompressible multiphase flow. Our ultimate goal is to estab
a computational scheme which can be run on a digital computer. In this section, we
discretize the continuous equations in Section Il to derive a lattice Boltzmann method

It has been shown [24-26] that the lattice Boltzmann method can be derived by
tematically discretizing the continuous Boltzmann equation. There are several steps ir
procedure. First, we need to discretize the microscopic velocity space into a set of dis
velocities so that the moment integrals of the distribution functions can be numeric
calculated using Gauss—Hermite quadratures. In two dimensions, the following 9-bit m
satisfies this requirement [25],

0, a=0,

e, = { (cosf(a — /2], sinf(e — Hm/2])c, a=12 3 4, (38)
V2(cosfe — 5)/2+ /4], sin[(e — 5)m/2+7/4)c, a=5,86,7, 8,

wherec=+/3RT. The corresponding discrete distribution functions are consequently
fined as

fo (X, 1) = we f (X, €a, 1), (39)
O (X, 1) = weg(X, €, 1), (40)
wherewo = g, we = 3 fora =1, 2, 3, 4, andw, = 5 fora =5, 6, 7, 8 are integral weights.

By Taylor-expanding™(u) in terms of the Mach numbeu/+/R T, we obtain the simplified
equilibrium distribution functions of, andg, [25]:

3g,-u 9, -u? 3u?
ff":“’“"’[“ @ T 22| (1)
3e,-u 9, -u? 3u?
(Sq = wa |:p + IO< Cz + 204 - 202 M (42)

Second, we need to discretize the continuous equation in temporal space. Fron
previous studies [9], a second order scheme is required for simulation of multiphase 1
To maintain an explicit scheme, we introduce the variables

(e V@)
f, = fo + ?Fa(u)st» (43)

1
9 =0« — (@ —W)- [To(W)(Fs + G) — (M (U) = To (0) VY (p)]4t, (44)
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wheres; is the time-step and

3e,-u  9e,-uw? 3u?
& U 96 -w?

LW =we |1+ ==+ ~ 23| (49)
The newly introduced variables andg satisfy the discrete evolution equations
fu(X+ @bt t 4+ 80) — T, (. 1)
D= XD (2 —1) (e — W) VY(9)
= - . - RT Lo (U)dt, (46)
g—a(x + %SI’ t + 8() - g_a(xv t)
g, (X, t) — gga(x, t 2r -1
= %D =600 2 e ) r W+ G)
T 2t
— (T () = T (0) VY (0)]dt, (47)

wheret = 1 /6. A third-order differencing scheme was used to calculate The macro-
scopic variables can be calculated using

p=> f, (48)
_ 1
P=)_0.—5u V¥, (49)
pRTU = Zedg + E(F +G)s (50)
o 2 S t-

Third, we need to discretize the physical space into a computational grid. For isothel
flows, the computation can be greatly simplified if the physical space can be discretize
that every discrete distribution function travels from one grid node to another one in €
time step. In two dimensions, this can be realized by utilizing a regular square lattice \
a lattice length ots;.

Equations (46) to (50) construct the lattice Boltzmann scheme for incompressible r
tiphase flow. In this model, the kinetic viscosity relates to the relaxation parameter
v=(t — 3RTS.

IV. NUMERICAL SIMULATION OF RAYLEIGH-TAYLOR INSTABILITY

When alayer of heavy fluid is placed on top of another layer of light fluid in a gravitatior
field with gravity pointing downward, the initial planar interface is unstable. Any disturban
will grow to produce spikes of heavy fluids moving downward and bubbles of light flui
moving upward. This is the so-called Rayleigh—Taylor instability (for review, see [27]).

In this study, we only focus on the two-dimensional Rayleigh—Taylor instability. T
computational domain is a two-dimensional box. Non-slip boundary conditions are apg
atthe top and bottom walls. Periodic boundary conditions are applied at the side bound:
The kinetic viscosity is assumed to be the same for both heavy and light fluids. Sur
tension is neglected in the simulation. The functipy) is chosen so that the pressure
satisfies the Carnahan—Starling equation of state in Eq. (14). The paranietdrosen to
bebc?, which is sufficient to induce phase segregation.
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We present our results in terms of non-dimensional variables. Unless otherwise r
tioned, we took the channel widilv as the length scale afd= ./W/g as the time scale,
whereg is the gravity. The non-dimensional parameters in our studies are the Reyn
number, Re= ./WgW/v, and the Atwood numbe’ = (on — 01)/(on + p1), Wherepn and
o are densities of heavy and light fluids, respectively.

A. Single-Mode

The single-mode Rayleigh—Taylor instability provides a good benchmark for numer
simulations of multiphase flows. In the early stage when the amplitude of the perturbatic
much smaller than the wave length, the perturbation of the fluid interface has an expone
growth [28, 29],

h = hge™, (51)

whereh is the amplitude at timg hg is the initial amplitude, and is the growth rate of the
perturbation. With the kinetic viscosity ratio to be one and the surface tension negligi
the growth rate is a function of Atwood number and wave nurkbeRr /W. Figure 2 plots
the growth rate measured in our LBM simulations along with the theoretical prediction
Chandrasekhar [29] at three different Atwood numbgrs; 0.2, 0.5, and 08. The simula-
tions were carried out on a 64128 grid. The growth rate is measured in unitggs/v)/3
and the wave number is measured in unitggyf?)'/3. As shown, our growth rates agree
well with the theoretical results. The minor discrepancy may be due to the limited grid s
The single-mode Rayleigh—Taylor instability exhibits a much more complicated patt
at large amplitudes. Figure 3 shows the evolution of the fluid interface from a 10% ini

0.350 ' ' '

0.40

0.30

0.00 ! ! !

0.0 0.5 1.0 1.5 2.0

FIG. 2. The dependence of the linear growth ratémeasured in units afg?/v)*?), of a disturbance on its
wavenumberk (measured in units afy/v?)Y/?), for three different Atwood numbers. The symbol is for numerica
simulation and the solid line is for the theoretical results by Chandrasekhar.
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FIG. 3. Evolution of the fluid interface from a single mode perturbation. The Atwood number is 0.5 and
Reynolds number is 2048. A total of 19 density contours are plotted. The time is measured in yAtg of

perturbation. The Atwood number is 0.5 and the Reynolds number is 2048. The simulz
was carried out on a 2561024 grid. The gravity was chosen so th&iVg = 0.04. The

interface was represented by 19 equally spaced density contours. During the early s
(t <1.0), the growth of the fluid interface remains symmetrical up-and-down. Later, |
heavy fluid falls as a spike and the light fluid rises to form bubbles. Starting tfeer 0,

the heavy fluid begins to roll up into two counter-rotating vortices. This phenomenon \
first computed by Daly [30] and studied further by other authors [31-34]. At a later tir
(t =3.0), these two vortices become unstable and a pair of secondary vortices appe
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the tails of the roll-ups. The roll-ups and vortices in the heavy fluid spike are due to
Kelvin—Helmholtz instability [30]. The shapes of the fluid interface in the current stu
compare well with those in previous studies [30, 33].

We continue our simulation to later time=€ 5.0). With anincrease intime, the heavy fluid
falling down gradually forms one central spike and two side spikes. It is interesting to r
that only the side spikes of the heavy fluid experience the Kelvin—-Helmholtz instability ¢
the interfaces along these two spikes are stretched and folded into very complicated st
The mixing of heavy and light fluids is significant. On the other hand, the interface alc
the central spike, as well as the fronts of both bubble and spike, remains relatively smc

The features of Rayleigh—Taylor instability in the late stage can be better illustrated
the velocity fields. In Fig. 4, we plotted the contours of streamlines at the left side pz
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FIG. 4. Velocity fields of the Rayleigh—Taylor instability at a late stage. The left panels are the streamli

and the right panels are the velocity vectors. The streamline is measured in upi&/&fW and the interval
between contours is 0.02.
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FIG. 5. Density profiles across the bubble and spike fronts at three different time stepss= (ap,
(b) t=3.0, and (c)t =5.0. The horizontal axis is the computational grid. The left panel shows the interfa
across the spike and the right panel shows the interface across the bubble. The Atwood number is 0.5 a
Reynolds number is 2048.

and the velocity vector plots at the right side panel. As expected, the heavy fluid falls d
in the middle and the light fluid rises along the edges. Between them exists a strong <
layer—a condition that incubates Kelvin—Helmholtz instability. A distorted single vortex
clearly visible att = 3.0. With an increase in time, more and more vortices are genera
and the flow field becomes quite distorted along the quadrants of the channel. This
pattern is consistent with the distortion of the interface along the side spikes.

One of the advantages of our LBM multiphase scheme is that the fluid interface c
not diffuse in simulations. Figure 5 shows the density profiles across the spike and bu
fronts in the above run. As shown, the interface remains sharp throughout the simula
No special treatment is used to reconstruct the interface. The interface thickness takes
3—4 grid spacings. There exist some “jiggles” near the interface and their causes need
study.

To study the effect of the viscosity on Rayleigh—Taylor instability, we repeated the ab
simulation using the same parameters except for decreasing the Reynolds number tc
Figure 6 shows the time evolution of the fluid interface. Compared to those in Fig. 3,
shapes of the bubble and spike fronts are almost the same. However, a decrease in Re
number (or an increase in viscosity) significantly suppresses the development of Kel
Helmholtz instability. Although the heavy fluid still rolls up as two side spikes, the interfa
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t=0.0 t=1.0 t=1.5 t=2.0 t=2.5

~—1\_/|

t=3.0 =35 t=4.0 t=4.5 t=5.0

FIG. 6. Evolution of the fluid interface from a single mode perturbation. The Atwood number is 0.5 and
Reynolds number is 256. A total of 19 density contours are plotted. The time is measured in Y& gf

along the side spikes remains rather smooth. The spiral vortices shown in Fig. 3 are
observed.

In Fig. 7, we plot the positions and velocities of the bubble front and spike tip ver:
time for the runs in Figs. 3 and 6. After an early stage (.0), the bubble settles into a
cruising state. The bubble movement shows little dependence on the Reynolds numbe
terminal bubble velocity, measured in units\@BAgW, is 0.270. This result compares well
with the value of 0.265 obtained by Tryggvason using a front-tracking approach [33]. N
that in Tryggvason'’s study, the viscosity was neglected. The growth of the spike sho
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position

time

0.5+ bubble _

velocity

time

FIG. 7. Positions and velocities of the bubble and spike fronts versus time. The Atwood number is 0.5.
solid lines are from simulation at Re2048, while the dashed lines are from simulation atR&b6. The length
is measured in units a and the time is measured in units gfV/g.

more complicated pattern. After an early-stage acceleratiort,at.0, the spike slows
down a little and accelerates again. This re-acceleration starts earlier and appears stt
at the higher Reynolds number (R€2048) than at the lower Reynolds number (R256).
Because the only noticeable difference between the Rayleigh—Taylor instabilities at |
Reynolds number and at low Reynolds number is the appearance of the secondary vo
we suspectthe re-acceleration of the spike may be due to the interaction among the secc
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a b c
128x512|256x 1024 128x512|256%x1024 128x512|256x1024

FIG. 8. Grid convergence of numerical solutions, (a) R256, t=5.0, (b) Re=2048,t=25, and
(c) Re=2048,t = 5.0. Only the contour of &(p; + pp) is plotted. The Atwood number is 0.5.

vortices. The sharp drop in the spike velocity at the end of the run is due to the boun
effect of the bottom wall.

One of the important issues in numerical simulations of Rayleigh—Taylor instability
the grid convergence of solutions. It has been observed by several authors [33, 34
numerical solutions do not converge under grid refinement when the viscosity is tot
neglected. It was argued [35, 33] that this lack of convergence is due to the formation
singularity on vortex sheet at the center of the roll-up. This singularity should be remo
when the viscosity exists. Figure 8 shows the grid dependence of our solutions=2%%
(Fig. 8a), our solution is almost converged up te 5.0 except a small protrusion near the
tails of the side spikes. At a larger Reynolds number of 2048 (Fig. 8b), the basic struct
of the bubble and spike up to= 2.5 are well converged but the details in the vortices sti
have differences. On the fine grid (2%6.024), the thickness of the thin filaments in the
roll-up vortices is measured to be 6—8 grid spacings. Considering that the interface ir
scheme takes 3—4 grid spacings, it is reasonable that the coarse grid $128 cannot
reveal these thin filaments. However, our solution at 948 does not convergetat 5.0
although the bubble front and spike tip show little dependence on grid size. How the
convergence varies with Reynolds number needs more study.

To study the effect of the Atwood humber, we also carried out simulations of the Raylei
Taylor instability for an Atwood of 0.9. The Reynolds number is chosen to be 614.4 in't
case. Figure 9 shows the evolution of the fluid interface from an initial 10% perturbatiol
amplitude. Compared this with the casefof= 0.5, the instability grows much faster. The
roll-ups of the heavy fluid still show up but this happens at a much larger amplitude. O
ously, Kelvin—Helmholtz instability becomes less important in Rayleigh—Taylor instabil
at high Atwood numbers. The terminal bubble velocity, measured in unitgAg§W, is
0.275 in this case.

It is interesting to compare our simulation results with those using the LBM multiphg
model of Gunstenseet al. [36]. Although both models successfully predicted the linez
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t=0.0 t=0.5 t=1.0 t=1.5 t=2.0

FIG. 9. Evolution of the fluid interface from a single mode perturbation. The Atwood number is 0.9 and
Reynolds number is 614.4. A total of 19 density contours are plotted. The time is measured in y(Wg @f

growth rate at the initial stage, the present scheme did a much better job in capturin
interface evolution at late stages. The vortex roll-up, which was not resolved in [36], \
successfully simulated in the present study.

B. Multiple Mode

Although the single-mode Rayleigh—Taylor instability is a good example for benchm
studies and has many interesting phenomena to explore, in real situations the instabilit,
likely grow from an initial perturbation with multiple wavelengths. This type of Rayleigh
Taylor instability eventually evolves into turbulent mixing. Direct numerical simulation
useful in understanding this complicated process.

We carried out our simulations of multiple-mode Rayleigh—Taylor instability on a512
512 grid. The Reynolds number was chosen to be 4096 and the Atwood number was
at 0.5. The gravity was chosen so th&Vg = 0.08. The initial perturbation of the fluid
interface was given by

h= Z an coknX) + by, sin(kyX), (52)

wherek, = 2nsr/W is the wave number. The amplitudeg.andb,, were randomly chosen
from a Gaussian distribution. A total of 10 modesq [21, 30]) were used.

The evolution of a multiple-mode Rayleigh—Taylor instability is shown in Fig. 10 at s
time steps. The early stage< 1.0) was characterized with growth of structures with sma
wave numbers. The heavy fluid falls down as slender spikes while the light fluid rises
as small bubbles. The amplitudes of perturbations have grown much larger than the i
wavelength at = 1.0. The interaction among small structures becomes obvious at0
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FIG. 10. Rayleigh—Taylor instability from a multiple mode perturbation. The Atwood number is 0.5 and t
Reynolds number is 4096. The time is measured in unitg\W/g.

and continues throughout the simulation. Three features can be observed during this
First, the larger bubbles rise faster than smaller ones. This is because the bubble &
stage moves in proportional to its size. Second, small bubbles continue to merge into I;
ones. At the time of = 4.0, the initial perturbation totally disappeared and the domina
wavelength becomed//2. Notice that this long wavelength does not exist in the initic
perturbation. Third, the interaction among bubbles leads to a turbulent mixing layer.
thickness of this mixing layer increases with time.

To quantify the characteristics of the turbulent mixing layer, we plotted in Fig. 11 t
averaged density profile against depth. The average density in the mixing layer is defin

p(2) = /p(x, 2) dx. (53)
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FIG. 11. Fluid density averaged over horizontal layers plotted against depth in a multiple-mode Raylei

Taylor instability.

The averaged density profiles have similar shapes while the thickness of the mixing |
increases with time. There are zig-zags in the density profiles which indicate the ir
ularity in the mixing layer. Figure 12 plots the bubble and spike fronts of the mixir
layer against time, where the bubble froht, and the spike fronth,, are defined

0.50 ' ' ' ' '

bubble
0.25

0.00E i

Position

—-0.25

spike
—0.50 N R S

time

FIG.12. Positions of the bubble and spike envelope versus time. The Atwood number is 0.5 and the Reyr

number is 4096. The length is measured in unitgénd the time is measured in units gfW/g.
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as

p(hy) — p = 0.99(onh — 1),
p(h2) — pr = 0.01(pn — p1).

Previous studies [31, 37, 38] have shown that the bubble front grotvs-ag Agt? after an
initial stage. Our results show the same trend. The non-dimensional coefficierdsured
from our simulation is 0.04, which is at the lower bound of the range 0.04—0.05 repol
by Youngs [31, 38].

V. CONCLUSIONS AND DISCUSSIONS

We have proposed a lattice Boltzmann scheme for simulation of incompressible m
phase flow. Unlike traditional CFD approaches which solve macroscopic governing e
tions, our scheme is based on the mesoscopic kinetic equation. The phase segregati
interfacial dynamics are modeled by incorporation of molecular interactions. The st
interface between different phases can be automatically maintained without any artif
treatments. For the incompressible flow, we use two sets of distribution functions: one
tracking the pressure and velocity fields and the other for the density field. Using the di
bution function of pressure enables us to reduce substantially the effect of numerical e
in calculation of intermolecular force.

Numerical simulations were carried out for the two-dimensional Rayleigh—Taylor
stability developed from both single-mode and multiple-mode initial perturbations.
simulations reveal most features of Rayleigh—Taylor instability observed in previous |
oretical and numerical studies. For the single-mode Rayleigh—Taylor instability, both
initial linear growth rate and the terminal bubble velocity agree well quantitatively with t
theoretical prediction and previous numerical simulations. For the multiple-mode Raylei
Taylor instability, the growth of the mixing layer compares well with other studies.

Our study also reveals several new aspects of the physics of the single-mode Rayl
Taylor instability. First, atthe very late stage, the spike starts areaccelaration phase, pro
due to the growth of Kelvin—Helmholtz instability in the wake of the main spike. Secor
the viscosity has little effect on the evolutions of the bubble and main spike, but it affe
the growth of Kelvin—Helmholtz instability.

The modification for the nearly incompressible limit in this paper may not preserve
mesoscopic physics, such as the interface shape. It nevertheless works well for stu
macroscopic flows where the interface shape is notimportant. To reveal mesoscopic ph
one must use the original kinetic equation for dense fluids. It should be pointed out tha
kinetic-theory-based formulation is not the only one suitable for simulation of multiphs
flow. For example, one can solve directly the macroscopic equations, such as those
in Egs. (15) and (16). However, the Kinetic-theory-based formulation provides a nat
way to incorporate the microscopic molecular interaction which is the physical origin of
interfacial dynamics. Interfacial dynamics such as phase segregation and surface tel
which are difficult to treat in traditional methods, can be easily modeled in the kine!
theory-based formulations.
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